Cancer imaging in the era of precision treatment: present and future
نویسنده
چکیده
The landscape of cancer imaging is being shaped by advances in oncological treatment. As the genetic and molecular aberration of cancers and cancer subtypes are being elucidated, specific cellular pathways and associated molecular receptors are recognized as potential pharmacological targets to modify or arrest cancer growth. In the past two decades, such targeted therapies are being developed and are progressively being introduced into the clinics. Broadly, they include monoclonal antibodies (-abs) targeted against circulating molecules or membrane receptors; and small molecules (-ibs) which act intracellularly on biochemical pathways. A number of molecular targets have been identified in the past decade in a range of tumours (including prostate, gastrointestinal stromal, colorectal, melanoma, chronic myeloid leukaemia, renal, lymphoma and myeloma) for which there are now approved and effective drugs directed at specific molecular receptors or cellular pathways. Many of these act by inhibiting signal transduction, blocking the signal between receptor activation and cellular proliferation; while others modify signalling proteins that regulate cellular functions. Another common mode of action is inhibiting neovascularization (antiangiogenic or antivascular), which in turn arrests tumour growth. There are also tumour vaccines and immunotherapies which stimulate cytotoxic response to cancer cells. Although target therapies have been employed with varying success in cancers, the complexity of tumour escape pathways and the recognition that monotherapy alone may not be effective, means that it has not been possible to fully individualise treatment for patients. This remains the ultimate goal of cancer management. However, accurate genetic and molecular tumour profiling is already helping to identify tumour subgroups enabling more precise treatment to be prescribed. Precision treatment aims to give the right drug (or combination of drugs) to the right patient at the right time to optimise tumour cell kill and minimise drug toxicity. In a wider context, precision treatment is also evolving in surgery and radiotherapy. The advent of robotic surgery allows more precise control of surgical dissection in some anatomical areas. In radiotherapy, the evolution from simple external beam treatment to state-of-the-art stereotactic body radiotherapy and cyberknife treatment means that high-dose or hypo-fractionated radiation can be delivered precisely to small target volumes thereby maximizing cell kill and reducing peri-tumoural complications. Cancer imaging remains at the heart of this approach, as precision treatment mandates precision imaging. In the era of targeted therapy and precision treatment, cancer imaging aims to accurately depict disease burden, provide the roadmap for treatment planning, enable novel assessment of treatment response and yield prognostic information. Although conventional imaging remains important; molecular, functional and hybrid/multiplex imaging are being developed and utilised. The depiction of disease sites and metastatic burden has implications for disease staging and prognostication. Body diffusion-weighted MRI (DWI) is now widely used as a contrast mechanism to improve disease detection at initial diagnosis and at disease relapse; especially for liver, peritoneal and bone metastases. State-of-the-art high spatial resolution CT and MRI provide detailed anatomical roadmaps for surgical and radiotherapy planning. The deployment of functional and molecular imaging yield additional biological information that can be used to define biological target volumes for precise radiotherapy planning. The portfolio of current imaging techniques also enables us to observe treatment induced changes or complications; and advance our knowledge in the effects of radiation, cytotoxic and targeted therapies on normal tissues. Royal Marsden Hospital, Sutton, UK Koh Cancer Imaging 2014, 14(Suppl 1):O30 http://www.cancerimagingjournal.com/content/14/S1/O30
منابع مشابه
Creation the fully integrated and flourishing assessment challenge award: Integration is the key
Medicine is now undertaking a paramount revolution that will alter the nature of healthcare from reactive to proactive. It is imperative to integrate experimental and computational investigation in order to appreciate complex biological systems in the era of precision medicine. In light of this revolution, we necessitate to precision medicine means such as systems approaches (genomics, radiogen...
متن کاملDiagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging
Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and ...
متن کاملA Novel Biocompatible Nanoprobe Based on Lipoproteins for Breast Cancer Cell Imaging
Objective(s): Contrast-enhanced magnetic resonance imaging (MRI) of breast cancer provides valuable data on the disease state of patients. Biocompatible nanoprobes are expected to play a pivotal role in medical diagnosis in the future owing to their prominent advantages. The present study aimed to introduce a novel biocompatible nanoprobe based on lipoproteins for breast cancer cell imaging.<br...
متن کاملنقش تکنولوژی در بهبود درمان سرطان
One major strategy, technology-driven improvement of treatment conformity in cancer treatment, including advanced image guidance, advanced charged particle therapy (CPT), and application of nanoparticles in hyperthermia, will enable further widening of the therapeutic window of cancer treatment in the era of precision medicine. The state of the art treatment in photon-therapy is advanced 3D...
متن کاملاستفاده از نانو ذرات در تشخیص و درمان سرطان سینه: یک مطالعه مروری
Introduction: Nowadays, cancer is one of the most important health concerns in modern societies. The application of nanoparticles has resulted in new possibilities for the diagnosis, tumor imaging and treatment of human cancers. Methods: Gathering and collecting of data have been done from 56 researches conducted on the structure of types of nanoparticles and their applications in diagnos...
متن کاملUtilization of Electronic Portal Imaging Device (EPID) For Setup Verification and Determination of Setup Margin in Head and Neck Radiation Therapy
Introduction: Radiation therapy involves a multistep procedure; therefore, the error in patient set up is an inherent part of the treatment. Main purpose of this study was to determine the clinical target volume (CTV) to planning target volume (PTV) in head and neck cancer patients. Material and Methods: A total of 15 patients who had daily p...
متن کامل